Hurricane Katrina

INFORMATION CYCLE
Information Cycle

- **First Hours**
- **Within a week to a month**
- **Within months +**
- **Within 24 Hours**
- **Within a year +**
- **Within a week to a month**
Information Cycle

First Hours

Within 24 Hours

Within a week to a month

Within months +

Within a year +

MEDIA

- Internet

[Image of a hurricane map with a heading: "Hurricane KATRINA is moving north at 15mph. It has max sustained winds of 120mph and gust of 150mph."

[Image of a map showing the path of Hurricane KATRINA]
Information Cycle

First Hours

Within 24 Hours

Within a week to a month

Within months +

Within a year +

MEDIA
- Internet
- Radio and Television
Information Cycle

First Hours

Within 24 Hours

Within a week

Within months +

Within a year +

Information Cycle

MEDIA
- Internet
- Radio and Television
- Social Media

Image of Hurricane Katrina and city flooding.
Information Cycle

First Hours

Within a year +

Within 24 Hours

Within months +

Within a week to a month
Information Cycle

First Hours

Within 24 Hours

Within a year +

Within a week to a month

Within months +

newspapers

Within 24 Hours

Within a year +

Within a week to a month

Within months +

newspapers
Information Cycle

- **First Hours**
- **Within 24 Hours**
- **Within a week to a month**
- **Within months +**

The Times-Picayune

CATASTROPHIC

STORM SURGE SWAPS 9TH WARD, ST. BERNARD
LAKEVIEW LEVEE BREACH THREATENS TO INUNDATE CITY
Information Cycle

First Hours

Within 24 Hours

Within a week to a month

Within months +

classified as newspapers
Information Cycle

First Hours

Within 24 Hours

Within a week

Within months +

Within a year +

newspapers

CATASTROPHIC
STORM SURGE SWAPS 9TH WARD, ST. BERNARD
LAKEVIEW LEVEE BREACH THREATENS TO INUNDATE CITY

THE TIMES-PICAYUNE

A CITY IN RUINS
RISING WATER SUBMERGES 80% OF NEW ORLEANS

THE INDIANAPOLIS STAR

9 Charged Over Tax Shelters In KPMG Case

Storm Thrashes Gulf Coast
Dozens Are Reported Dead in One Mississippi County

The Washington Post

Military Wrestles With Disharmony Among Chaplains

No Direct Hit In New Orleans, But Extensive Destruction

The Independent

State's Class of '05 set SAT records

UNLEADED MONDAY
299s $3 GAS ARRIVES. WILL IT STAY?
Indy drivers face price spike as holiday weekend nears.

HURRICANE KATRINA | 6 PAGES OF COVERAGE INSIDE

Levees break: governor orders city emptied

The Independent
Information Cycle

First Hours

Within a year +

Within a week to a month

Within months +

Within 24 Hours
Information Cycle

- First Hours
- Within 24 Hours
- Within a week to a month
- Within months +
- Within a year +
- Popular Magazines
Information Cycle

Within First Hours

Within a week to a month

Within months +

Within a year +

Popular Magazines
Information Cycle

First Hours

Within a week to a month

Within months +

Within a year +

Popular Magazines
Information Cycle

First Hours
Within 24 Hours

Within a week to a month
Within months+
Within a year+

Popular Magazines

Within Hours
Within a week to a month
Information Cycle

First Hours

Within a year +

Within months +

Within 24 Hours

Within a week to a month
Information Cycle

First Hours

Within a week to a month

Within a year +

Within 24 Hours

Within months +

Within a week to a month

Journals
Information Cycle

First Hours
Within a year +
Within months +
Scholarly Journals

Applications of Radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana

LAWRENCE M. KIAE††, NAN D. WALKER†, SHREEKANTH BALASUBRAMANIAN†, ADELE BABIN† and JOHN BARRAS†
†Coastal Studies Institute Earth Scan Laboratory, Louisiana State University, Howel/Russell Geoscience Complex, Baton Rouge, LA 70803, USA
‡Department of Geography and Anthropology, Louisiana State University, Howel/Russell Geoscience Complex, Baton Rouge, LA 70803, USA
§Department of Oceanography and Coastal Sciences, Howel/Russell Geoscience Complex, Baton Rouge, LA 70803, USA
¶United States Department of Interior, United States Geological Survey, Baton Rouge, LA 70804, USA

(Received 24 October 2003; in final form 26 October 2003)

The Louisiana coast is subjected to hurricane impacts including flooding of human settlements, river channels and coastal marshes, and salt water intrusion. Information on the extent of flooding is often required quickly for emergency relief, repairs of infrastructure, and production of flood risk maps. This study investigates the feasibility of using Radarsat-1 SAR imagery to detect flooded areas in coastal Louisiana after Hurricane Lili, October 2002. Arithmetic differencing and multi-temporal enhancement techniques were employed to detect flooding and to investigate relationships between backscatter and water level changes. Strong positive correlations ($R^2 = 0.7-0.94$) were observed between water level and SAR backscatter within marsh areas proximate to Atchafalya Bay. Although variations in elevation and vegetation type did influence and complicate the radar signature at individual sites, multi-date differences in backscatter largely reflected the patterns of flooding within marsh areas. Preliminary analyses show that SAR imagery was not useful in mapping urban flooding in New Orleans after Hurricane Katrina's landfall on 29 August 2005.

1. Introduction
Information Cycle

First Hours

Within a year +

Journals

Within months +

International Journal of Remote Sensing
Vol. 26, No. 24, 20 December 2005, 5399–5380

Applications of Radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana

LAWRENCE M. KIAPE†, NANCY D. WALKER†, SHREEKANTH BALASUBRAMANIAN†, ADELE BABIN† AND JOHN BARRASS†
†Coastal Studies Institute Earth System Laboratory, Louisiana State University, Howe Russell Geoscience Complex, Baton Rouge, LA 70803, USA
†Department of Geography and Anthropology, Louisiana State University, Howe Russell Geoscience Complex, Baton Rouge, LA 70803, USA
†Department of Oceanography and Coastal Sciences, Howe Russell Geoscience Complex, Baton Rouge, LA 70803, USA
†United States Department of Interior, United States Geological Survey, Baton Rouge, LA 70804, USA

(Received 24 October 2005; in final form 26 October 2005)

The Louisiana coast is subjected to hurricane impacts including flooding of human settlements, river channels and coastal marshes, and salt water intrusion. Information on the extent of flooding is often required quickly for emergency relief, repairs of infrastructure, and production of flood risk maps. This study

NATURE Vol. 438/22 September 2005

BRIEF COMMUNICATIONS ARISING

METEOROLOGY

Are there trends in hurricane destruction?

Since the record impact of Hurricane Katrina, attention has focused on understanding trends in hurricanes and their destructive potential. Emanuel reports a marked increase in the potential destructiveness of hurricanes based on identification of a trend in an accumulated annual index of power dissipation in the North Atlantic and western North Pacific since the 1970s. If hurricanes are indeed becoming more destructive over time, then this trend should manifest itself in more destruction. However, analysis of a long-term database of hurricane losses in the United States shows no upward trend once the data are normalized to remove the effects of societal changes. Historical hurricane losses can be adjusted to a base year's values through adjustments related to inflation, population and wealth, events per year) of 9.3 billion, and an average per-storm loss in 1951–2004 for 46 storms (0.85 events per year) of 7.0 billion; this difference is not statistically significant. Adding Hurricane Katrina to the data set, even at the largest loss figures currently suggested, would not change the interpretation of results. These loss data indicate two possibilities with respect to Emanuel's analysis: if the power-dissipation index metric is an accurate indicator of hurricane destructiveness, then the trend identified by Emanuel could be an artefact of the data and or methods; alternatively, the trend he identifies is an accurate reflection of trends in the real-world characteristics of storms, but the power-dissipation index is a weak indicator of hurricane destructiveness — which would call for the identification of other factors.
Information Cycle

Original Article

Hurricanes Katrina and Rita: Evacuee Healthcare Efforts Remote from Hurricane Affected Areas

Philip A. Rozeman, MD, FACC, FSCAI, and Edward J. Mayeaux, Jr., MD, DABFP, FAAP

Abstract: Hurricanes Katrina and Rita produced the largest evacuation due to a natural disaster in United States history. Many people were evacuated or rescued from New Orleans and the Gulf Coast, resulting in a need for mass disaster shelters and medical care for months following the storms. The shelter healthcare system that was successfully developed in the Shreveport/Bossier City, Louisiana area was accomplished with little support from customary sources. This report is written after much discussion and introspection of community leaders involved “on the ground” who organized and provided medical services to evacuees of south Louisiana. Its purpose is to compile “lessons learned” in preparation for the next disaster recovery effort that might affect this or any other region of our country.

Key Words: Katrina, Rita, evacuation, healthcare, shelter

Journals

Within months +

International Journal of Remote Sensing
Vol. 26, No. 24, 20 December 2005, 5359–5380

Applications of Radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana

LAWRENCE M. KIAGE††, NAM D. WALKER‡‡, SHREEKANTH BALASUBRAMANIANT, ADELE BABB§ and JOHN BARRAS†
†Coastal Studies Institute Earth Scan Laboratory, Louisiana State University, Howie Russell Geoscience Complex, Baton Rouge, LA 70803, USA
‡Department of Geography and Anthropology, Louisiana State University, Howie Russell Geoscience Complex, Baton Rouge, LA 70803, USA
§Department of Oceanography and Coastal Sciences, Howie Russell Geoscience Complex, Baton Rouge, LA 70803, USA
††United States Department of Interior, United States Geological Survey, Baton Rouge, LA 70804, USA

(Received 24 October 2005; in final form 26 October 2005)

The Louisiana coast is subjected to hurricane impacts including flooding of human settlements, river channels and coastal marshes, and salt water intrusion. Information on the extent of flooding is often required quickly for emergency relief, repairs of infrastructures, and production of flood risk maps. This study

BRIEF COMMUNICATIONS ARISING

Are there trends in hurricane destruction?

Since the record impact of Hurricane Katrina, attention has focused on understanding trends in hurricanes and their destructive potential. Emanuel reports a marked increase in the potential destructiveness of hurricanes based on identification of a trend in an accumulated annual index of power dissipation in the North Atlantic and western North Pacific since the 1970s. If hurricanes are indeed becoming more destructive over time, then this trend should manifest itself in more destruction. However, my analysis of a long-term data set of hurricane losses in the United States shows no upward trend once the data are normalized to remove the effects of societal changes. Historical hurricane losses can be adjusted to a base year’s values through adjustments related to inflation, population and wealth. Events per year) of $9.3 billion, and an average per-storm loss in 1951–2004 for 46 storms (0.95 events per year) of $7.0 billion; this difference is not statistically significant. Adding Hurricane Katrina to the data set, even at the largest loss figures currently suggested, would not change the interpretation of these results. These loss data indicate two possibilities with respect to Emanuel’s analysis: if the power-dissipation index metric is an accurate indicator of hurricane destructiveness, then the trend identified by Emanuel could be an artifact of the data and/or methods, alternatively, the trend he identifies is an accurate reflection of trends in the real-world characteristics of storms, but the power-dissipation index is a weak indicator of hurricane destructiveness — which would call for the identification of other factors affecting the societal impact of hurricanes. Roger A. Pielke, Jr Center for Science and Technology Policy Research, University of Colorado, Campus Box 488, Boulder, Colorado 80309-0480, USA e-mail: pielke@colorado.edu

Information Cycle

- First Hours
- Within 24 Hours
- Within a week to a month
- Within months +
- Within a year +
- Within a month
Information Cycle

First Hours

Within a week to a month

Within months +

Within a year +

Books

Hurricane Katrina, New Orleans, and the Mississippi Gulf Coast

New York Times Bestselling Author

DOUGLAS BRINKLEY
Information Cycle

- Within 24 hours
- Within a week to a month
- Within months +
- Within a year +

Books
Documentaries

- National Geographic
- INSIDE Hurricane Katrina
- The Great Deluge
- Hurricane Katrina, New Orleans, and the Mississippi Gulf Coast
- Douglas Brinkley
Information Cycle

Within First Hours
Within 24 Hours
Within a Week
Within Months +
Within a Year +

Books
Documentaries
Anniversary Works

The New York Times

View of a Hurricane, 5 Years On; [Web Log]

Information Cycle

- **Within 24 Hours:**
 - Books
 - Documentaries
 - Anniversary Works
 - Encyclopedias

- **Within a Week:**

- **Within Months +**

- **Within a Year +**

Hurricane Katrina, tropical cyclone that struck the southeastern United States in late August 2005, killed more than 1,800 lives, and it ranked as the costliest natural disaster in U.S. history.

The New York Times

View of a Hurricane, 5 Years On; [Web Log]

Information Cycle

First Hours

Within a year +

Within 24 Hours

Within months +

Within a week to a month